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Background and Purpose: Renal cell carcinoma (RCC) is a malignant neoplasm of the kidneys, 
characterized by distinct molecular and histological subtypes. Accurate subtyping is crucial for 
personalized treatment and improved patient outcomes. High-throughput sequencing has enabled 
precise gene expression profiling for cancer classification. This study compares tree-based and non-
tree-based machine learning algorithms for differentiating between gene expression profiles of 
chromophobe, clear cell, and papillary RCCs. 
Methods: RNA-seq data from a diverse cohort of patients diagnosed with these three cancer subtypes 
was used. Data preprocessing and normalization were performed, followed by feature selection using 
Analysis of Variance (ANOVA). Tree-based and non-tree-based algorithms were trained on the 
preprocessed data. The tree-based algorithms included decision tree, random forest, extra trees 
classifier, and bagging classifier. The non-tree-based algorithms included logistic regression, support 
vector machine, and naive bayes. Each algorithm was evaluated using sensitivity, specificity, F1 score, 
and AUC. 
Results: Tree-based algorithms demonstrated superior performance across all evaluation metrics 
compared to non-tree-based algorithms. Specifically, the random forest classifier achieved the highest 
specificity and F1 score, the decision tree classifier achieved the highest sensitivity, while the bagging 
classifier achieved the highest AUC score. In contrast, non-tree-based algorithms showed 
comparatively lower performance in distinguishing between the cancer subtypes. 
Conclusions: This study demonstrates the potential of machine learning, particularly tree-based 
models, for precise RCC subtyping. By leveraging tree-based models, we can effectively capture the 
complex, non-linear patterns in gene expression datasets. Future studies should aim to validate these 
findings across larger and more diverse datasets of RCC subtypes. 
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1 Introduction 

Kidney cancer is the seventh most common cause of cancer globally, and its prevalence is on the rise [1]. 

Renal cell carcinoma (RCC) accounts for more than 90% of all renal malignancies and is the most frequent 

malignant tumor of the kidney [2]. According to the International Agency for Research on Cancer, over 

400,000 new cases of RCC are diagnosed each year, with more than 170,000 deaths globally [3]. The three 

most frequent histological subtypes of RCC are clear cell, papillary, and chromophobe, which account for 

more than 90% of all RCCs [4]. Accurate subtyping of RCC is crucial, as these subtypes greatly influence 

treatment and prognosis of these tumors [4] [5]. 

In recent years, RNA-seq gene expression platforms [6] [7] have emerged as the preferred method for 

simultaneous gene expression quantification when compared to DNA microarrays [8] [9]. Gene expression 

data from RNA-seq provide useful information on the differential activation of genes involved in cancer 

development [10]. Because cancer is a complex disease with several genetic changes, analysing gene 

expression data from tumor samples allows for the study of the molecular factors influencing disease 
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progression and patient outcomes [11]. By effectively extracting information from RNA-seq data, 
physicians can gain a more comprehensive molecular view of a patient's condition, potentially leading to 
more precise diagnostic and prognosis procedures [12]. 

While RNA-seq gene expression data has significantly improved cancer classification, it does have 
limitations, particularly due to its typically small sample size [13]. Moreover, these samples often include 
numerous genes that are uninformative, which can negatively impact the performance of classification 
algorithms [13] [14]. To tackle the challenge of high dimensionality, it is essential to perform gene selection 
by eliminating redundant and uninformative genes [15]. One strategy to address this is to first apply 
filtration and feature selection techniques before proceeding with model development [14] [16]. 

Researchers have employed various machine learning methods, including supervised and unsupervised 
learning, and deep learning, to classify cancers using gene expression profiles. In a study by Mohammed et 
al. [14], a novel deep learning architecture was developed by stacking the outputs of five one-dimensional 
convolutional neural networks (1D-CNNs) to a feedforward neural network. This model was used to 
classify five of the most commonly diagnosed cancers in women. The results of this study suggested that 
this model could potentially enhance early cancer detection and diagnosis in women, as well as inform the 
design of early treatment strategies to improve survival. 

Divate et al. [17] used transcriptomic data from 37 different cancer types sourced from The Cancer 
Genome Atlas (TCGA) to develop a deep neural network for identifying cancer-specific gene expression 
signatures based on tissue of origin. Their model successfully identified 976 genes capable of classifying 
various cancer types with >97% accuracy. In a different study, Abdelwahab et al. [18] employed a hybrid 
approach combining mutual information and recursive feature elimination methods with a support vector 
classifier model. They also incorporated a random forest model as an embedded feature selection technique. 
This strategy led to the identification of 12 candidate biomarkers strongly associated with different lung 
cancer types, especially lung adenocarcinoma. 

Marostica et al. [19] used whole-slide histopathology images and demographic, genomic, and clinical 
data from multiple sources to develop convolutional neural networks for diagnosing renal cancers and 
linking quantitative pathology patterns with genomic profiles and prognoses of patients. Their deep learning 
models successfully detected histological subtypes of RCC, predicted survival outcomes for stage I clear 
cell RCC patients, and identified patterns in histopathology images indicative of copy-number alterations 
and tumor mutation burden. Their findings demonstrated that machine learning and deep learning 
techniques can effectively extract clinically relevant signals from histologic and genomic data, potentially 
aiding in patient diagnosis, prognosis, and identification of important genomic variations. 

In this study, we demonstrate that tree-based models comparatively outperform non-tree-based models 
in differentiating between the gene expression profiles of chromophobe, clear cell, and papillary RCCs. 
Findings from this study could inform future research aimed at the early detection and accurate 
classification of these cancer subtypes. 

2 Materials and methods 

For this study, RNA-seq gene expression data from Pan-Cancer Atlas (https://portal.gdc.cancer.gov/) was 
used [20]. The data was retrieved using R statistical software version 4.3.1 via the TCGAbiolinks package 
accessible on Bioconductor [21] [22]. The data consisted of 897 samples representing chromophobe, clear 
cell, and papillary RCCs. Subsequently, seven machine learning algorithms were trained to discriminate 
between these cancer subtypes based on their unique molecular signatures. The data download was 
performed using R software [21], while the machine learning methods were implemented using Python [23] 
and scikit-learn [24]. 

2.1 Datasets 

We downloaded the dataset from the Pan-Cancer Atlas using the GDCquery function in the TCGAbiolinks 
package, available on Bioconductor [22]. The dataset included samples of chromophobe, clear cell, and 
papillary RCCs, with benign tumor cases excluded. The GDCquery function was configured with specific 
parameters to retrieve the desired data. We used the project codes TCGA-KICH, TCGA-KIRC, and TCGA-
KIRP to obtain data for the three RCC subtypes. Data filtering was done by setting the data.category to 

https://portal.gdc.cancer.gov/
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“Transcriptome Profiling” and the data.type to “Gene Expression Quantification.” We restricted our query 
to The Cancer Genome Atlas files by using the barcode “TCGA*.” Additionally, we specified “STAR – 
Counts” for the workflow.type and “Primary Tumor” for the sample.type. The resulting dataset was 
structured as a matrix, with samples represented in columns and genes in rows. In total, we obtained 897 
samples and 60,660 genes. To address the issue of high dimensionality, we filtered out non-informative 
genes and performed feature selection to identify the most relevant genes for enhancing the performance 
of our machine learning models. Table 1 below shows a summary of the downloaded dataset, including the 
training and testing fractions for each tumor class. 

Table 1. Number of samples across each cancer subtype 

Cancer subtype Number of samples Training set (≈80%) Test set (≈20%) 
Chromophobe 66  53 13 
Clear cell 541 427 114 
Papillary 290 237 53 
Total 897 717 180 

2.2 Data Pre-processing 

For the data preprocessing phase of our study, we employed the TCGAanalyze_Preprocessing function 
from the TCGAbiolinks package [22]. This function implements an array-array intensity correlation 
(AAIC) method to construct an N × N square symmetric matrix, where N represents the number of samples. 
Each element of this matrix corresponds to the Pearson correlation coefficient between a pair of samples. 
As illustrated in Figure 1, AAIC identifies samples with low correlation that could potentially be removed 
as outliers. In our analysis, no outliers were detected, suggesting a high degree of consistency across our 
dataset. 

 
Figure 1. Array-array intensity correlation (AAIC) matrix defining the Pearson correlation coefficients among the 

samples. 

Following this step, we conducted filtration of the expression matrix. Genes with a transcripts-per-
million (TPM) value greater than 2000 were excluded from the matrix, as they were considered to be overly 
expressed and possibly indicative of housekeeping genes. Likewise, genes with a TPM value less than 100 
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were also removed from the matrix as they were regarded as underexpressed. The resulting matrix 
comprised 8,540 genes, indicating that a total of 52,120 genes were filtered out. 

2.3 Feature Selection 

ANOVA was further employed to reduce the number of genes. ANOVA evaluates the relationship between 
gene expression levels and cancer subtypes by comparing group means and calculating F-statistics. Genes 
with higher F-statistics are considered more relevant for distinguishing between the cancer subtypes, 
helping to identify the most informative genes in the expression dataset. 

2.4 Data Splitting 

The dataset was divided into an 80% training set and a 20% test set. We performed a 10-fold stratified 
cross-validation on the training set, where each fold served as a validation set while the remaining nine 
folds were used for training. This process was repeated ten times, with a different fold acting as the 
validation set in each iteration. The optimal hyperparameters for the models were determined based on this 
cross-validation. The test set was then used for the independent evaluation of the machine learning 
algorithms. 

2.5 Machine Learning Algorithms 

Seven machine learning algorithms were used: logistic regression, naive bayes, support vector machine, 
decision tree, random forest, extra trees classifier, and bagging classifier. 

2.5.1 Logistic Regression.  
Logistic regression is a statistical model used for binary classification tasks, where the goal is to predict 
one of two possible outcomes based on input features [25]. In our case, we want to classify samples into 
three categories: chromophobe, clear cell, and papillary RCCs. To adapt logistic regression for multi-class 
classification, we can use the "one-vs-all" (also known as "one-vs-rest") approach. 

Let’s denote the following: 
• X  as the input feature matrix with n samples (rows) and m genes (columns). 
• Y as the output variable representing the class labels. In this case, Y will have three categories: 

chromophobe (Y = 1), clear cell (Y = 2), and papillary (Y = 3). 
The probability that a sample belongs to a particular class is modeled using the sigmoid function (!(#)): 

      (i) 

Where Z is the linear combination of the input features and model parameters (θ): 
   (ii)  

And where, %!, %", … , %#  are the gene expression values for a particular sample, and 
($, (!, (", … , (# are the model parameters to be learned from the data. 

For the three-class classification, three separate logistic regression models are created, one for each class. 
The models are trained as follows: 

Chromophobe RCC (Y = 1): 
• Set )%  to 1 if the sample is chromophobe RCC, and 0 otherwise. 
• Train a logistic regression model with the sigmoid function using the above formulas. 

Clear Cell RCC (Y = 2): 
• Set )%  to 1 if the sample is clear cell RCC, and 0 otherwise. 
• Train a logistic regression model with the sigmoid function using the above formulas. 

Papillary RCC (Y = 3): 
• Set )%to 1 if the sample is papillary RCC, and 0 otherwise. 
• Train a logistic regression model with the sigmoid function using the above formulas. 
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Once the models have been trained, prediction is made for a new sample by computing the probability 
for each class using the trained models: 

  (iii) 

  (iv) 

  (v) 

Where ((!), (("), ((() are the learned model parameters for each class. 
Finally, the predicted class for the new sample is the class with the highest probability: 

     (vi) 

So, Ŷ will be one of the three classes: chromophobe, clear cell, or papillary RCC, based on the highest 
computed probability. 

 2.5.2 Naive Bayes.  
The naive bayes algorithm makes predictions using Bayes' theorem [26]. It assumes that the features of a 
given dataset are conditionally independent given the class. It begins by calculating the prior probabilities 
of each class (chromophobe RCC, clear cell RCC, and papillary RCCs) based on the frequency of each 
class in the dataset. This is done using the following formula: 

    (vii) 

For each class, it estimates the likelihood of observing the gene expressions for that class. This step can 
vary depending on the type of naive bayes algorithm (e.g., Gaussian, Multinomial, or Bernoulli), but it 
essentially computes the probability distribution of the features, that is, genes within each class. Naive 
bayes then assumes that the features are conditionally independent given the class. This simplifying 
assumption makes the calculations tractable and is expressed as: 

        

(viii) 

To predict a new sample, that is, a new set of gene expressions, naive bayes computes the posterior 
probability for each class by using Bayes' theorem: 

       (ix) 

Where +(%|-)) is the likelihood of observing the gene expressions for class -) , +(-)) is the prior 
probability of class -) , and +(%) is a normalization constant. Naive bayes then predicts the class that 
maximizes the posterior probability: 

      (x) 

 2.5.3 Support Vector Machines (SVMs).  
SVMs are a type of supervised machine learning algorithm used for both classification and regression tasks 
[27]. When applied to a dataset with three distinct classes, the SVM algorithm seeks to determine the best 
hyperplane that separates the classes while maximizing the distance between the closest points from 
different classes. It does this by solving the following optimization problem: 
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   (xi) 

Where w represents the weights, b is the bias term, C is a hyperparameter controlling the penalty for 
misclassification, .%  are the input features, and /%  is the target class label (1 for the positive class, -1 for 
the negative class). The decision boundary is determined by the hyperplane that separates the data points 
of different classes with the largest margin. New data points are classified based on which side of the 
hyperplane they fall on. 

 2.5.4 Decision Tree.  
Decision tree is a machine learning algorithm whose output is determined by recursively partitioning data 
based on the values of different features, with the goal of maximizing the information gain or Gini impurity 
reduction at each step. This is achieved through a series of if-else conditions leading to leaf nodes, which 
represent the final class predictions [28]. 

 2.5.5 Random Forest.  
Random forest is a machine learning algorithm based on ensemble learning that builds multiple decision 
trees using bootstrapped samples of data, with the final output determined by aggregating the predictions 
of individual trees, often through a majority vote. The output can be represented as an average or a weighted 
sum of the individual decision tree predictions [29]. 

 2.5.6 Extra Trees Classifier.  
Extra trees classifier also constructs multiple randomized decision trees. However, it differs from random 
forest in that it splits nodes using randomly selected features and thresholds, rather than searching for the 
best split. The final prediction is determined by aggregating the outputs of individual trees, typically 
through majority voting [30]. 

 2.5.7 Bagging Classifier.  
Bagging classifier creates multiple subsets of the original dataset through bootstrap sampling, trains a 
separate classifier (like decision trees) on each subset, and combines their predictions. The final output is 
determined by aggregating individual classifier predictions through majority voting [31]. 

2.6 Class Imbalance 

To address the class imbalance, class weighting was implemented based on the frequency of each class in 
the dataset. The weighting was inversely proportional to the class frequencies, such that the class with the 
least frequency was assigned the highest weight, and the class with the most frequency was assigned the 
lowest weight. 

2.7 Performance Evaluation 

Four statistical metrics, namely sensitivity, specificity, F1 score, and AUC, were selected for assessing and 
comparing the performance of the various models in this study. 

Sensitivity, also known as recall or true positive rate, assesses how well the model captures all the actual 
cancer cases. It measures the ratio of true positives to the total number of actual cancer cases. 

   (xii) 

Specificity, otherwise known as true negative rate, evaluates how well the model correctly identifies 
non-cancer cases among the cases it predicted as negative. It measures the ratio of true negatives to the total 
number of actual non-cancer cases. 
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   (xiii) 

F1 score is the harmonic mean of precision and recall, providing a balance between the two metrics. 

    (xiv) 

AUC assesses the ability of the model to discriminate between cancer and non-cancer cases at different 
classification thresholds. It represents the area under the receiver operating characteristic curve, which is a 
graphical representation of the true positive rate against the false positive rate at various threshold settings. 

3 Results 

We evaluated the performance of the machine learning algorithms using a hold-out test set comprising 180 
samples. Table 2 shows the overall performance of each of the algorithms. 

Table 2. Overall performance of each of the algorithms. 

Model Sensitivity Specificity F1 Score AUC 
Logistic Regression 82.53 94.63 86.58 97.78 
Naive Bayes 90.27 95.89 88.83 98.06 
Support Vector Machine 85.63 96.69 89.64 98.23 
Decision Tree 93.21 96.44 89.51 96.82 
Random Forest 93.12 98.09 91.42 99.14 
Extra Trees Classifier 92.20 97.38 89.84 98.49 
Bagging Classifier 84.42 95.72 87.43 99.16 

 
Overall, the tree-based ensemble models, particularly random forest, demonstrated superior performance 

across all metrics. Random forest achieved the highest specificity (98.09%) and F1 score (91.42%), 
indicating its robust ability to correctly identify negative cases and maintain a strong balance between 
precision and recall. Decision tree achieved the highest sensitivity (93.21%), suggesting its effectiveness in 
identifying positive cases. 

Bagging classifier, despite not leading in sensitivity, specificity, or F1 score, achieved the highest AUC 
score (99.16%). Extra trees classifier also showed competitive performance, achieving high scores across 
all metrics. 

In contrast, non-tree-based algorithms, including logistic regression and SVM, showed comparatively 
lower performance in distinguishing between cancer subtypes. 

Table 3 shows the performance of each of the algorithms across the three cancer subtypes. 
 

Table 3. Performance of each of the algorithms across the three cancer subtypes. 

 
Classifier 

Performance Metrics 
Sensitivity Specificity F1 Score 
KICH KIRC KIRP KICH KIRC KIRP KICH KIRC KIRP 

Logistic 
Regression 

61.54 97.37 88.68 100.00 89.39 94.49 76.19 95.69 87.85 

Naive 
Bayes 

84.62 95.61 90.57 97.60 92.42 97.64 78.57 95.61 92.31 

Support 
Vector 

Machine 

61.54 99.12 96.23 100.00 92.42 97.64 76.19 97.41 95.33 
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Decision 
Tree 

92.31 92.98 94.34 97.01 95.45 96.85 80.00 95.07 93.46 

Random 
Forest 

84.62 97.74 100.00 98.20 100.00 96.06 81.48 97.30 95.50 

Extra 
Trees 

Classifier 

84.62 93.86 98.11 97.60 98.48 96.06 78.57 96.40 

 

94.55 

Bagging 
Classifier 

61.54 97.37 94.34 99.40 90.91 96.85 72.73 96.10 93.46 

KICH, Chromophobe; KIRC, Clear Cell; KIRP, Papillary. 
 

The confusion matrices for the tree-based models are shown in Figure 2, Figure 3, Figure 4, and Figure 5. 
 

Figure 2. Confusion matrix for decision tree. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 

 
Figure 3. Confusion matrix for random forest. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 
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Figure 4. Confusion matrix for extra trees classifier. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 

 
Figure 5. Confusion matrix for bagging classifier. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 

 
 
The receiver operating characteristic (ROC) curves for the tree-based models are shown in Figure 6, 

Figure 7, Figure 8, and Figure 9. 
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Figure 6. Multi-class ROC curves for decision tree. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 

 
 

 

 

Figure 7. Multi-class ROC curves for random forest. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 

 
  



49 Oluwafemi Ogundare / A Tree-based Machine Learning Approach for Precise Renal Cell Carcinoma 
Subtyping using RNA-seq Gene Expression Data 

 

© 2025 JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons Attribution Non-
Commercial License. J Health Inform Afr. 2025;12(1):39-53. DOI: 10.12856/JHIA-2025-v12-i1-533 

 

Figure 8. Multi-class ROC curves for extra trees classifier. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 

 
 

Figure 9. Multi-class ROC curves for bagging classifier. KICH, Chromophobe; KIRC, Clear cell; KIRP, Papillary. 

 
 

4 Discussion 

This work extends previous efforts in cancer genomics, such as TCGA project, which has provided 
comprehensive molecular characterization of various cancer types, including renal cell carcinoma [32]. Our 
approach builds upon previous work in cancer subtyping using gene expression data, such as the study by 
Ramaswamy et al. [33], which utilized SVMs for tumor classification. However, our research demonstrates 
that tree-based algorithms outperform non-tree-based algorithms in this context. Our tree-based method 
offers the advantage of handling complex, non-linear relationships in high-dimensional gene expression 
data. 
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The superior performance of tree-based models, particularly random forest, can be attributed to their 
ability to capture complex, non-linear relationships in gene expression datasets [34] [35]. Cancer subtype 
classification often involves complex interactions between multiple genes [11] [36], which may not be 
adequately captured by models such as logistic regression or SVM [37]. The ensemble nature of random 
forest, combining multiple decision trees, allows it to model these complex relationships more effectively, 
resulting in its high specificity and F1 scores. 

The high sensitivity achieved by the decision tree model suggests that simpler tree-based structures can 
effectively identify positive cases [38]. However, the slightly lower specificity compared to random forest 
indicates a trade-off between sensitivity and specificity. In clinical settings, the choice between these 
models may depend on whether it is more important to minimize false positives or false negatives for the 
particular cancer subtype being studied. 

The high AUC score of the bagging classifier suggests its ability to discriminate between cancer subtypes 
across various classification thresholds [39]. This further supports the effectiveness of tree-based models 
in RCC subtyping. 

The relatively lower performance of non-tree-based algorithms like logistic regression and SVM 
underscores the importance of model selection in genomic studies. While these models are often favored 
for their interpretability and efficiency [40], our results suggest that they may not adequately capture the 
complexity of gene expression data in cancer subtype classification [11] [36]. 

These findings hold significant implications for both research and clinical practice. In research settings, 
our results emphasize the importance of considering tree-based and ensemble methods when analyzing 
gene expression data, particularly for cancer subtype classification. Clinically, the high performance of 
these models suggests potential for improving diagnostic accuracy and treatment planning in RCC. 

However, it is important to note that model selection should not be based solely on performance metrics. 
Factors such as interpretability, computational efficiency, and the specific requirements of the clinical 
application should also be considered. For instance, while random forest showed the best overall 
performance, its “black box” nature [41] may make it challenging to interpret in clinical settings where 
understanding the decision-making process is important [42]. 

Our study was limited by the small sample size and the significant class imbalance in the RCC samples, 
particularly with chromophobe RCC compared to the other cancer subtypes. These limitations could 
potentially affect the reliability of our findings. Also, the study focused solely on RNA-seq gene expression 
profiles and did not incorporate other data types, such as histological images, mutation profiles, or copy 
number alterations, which could have impacted the outcome. 

Future research should focus on validating these findings across larger and more diverse datasets of RCC 
subtypes and taking further steps to incorporate additional genomic and clinical data to enhance the clinical 
utility of machine learning-based RCC subtyping models. 

5  Conclusion 

In conclusion, we demonstrated the superiority of tree-based models in differentiating between the gene 
expression profiles of RCC subtypes, namely chromophobe, clear cell, and papillary RCCs. Future research 
should explore the integration of other data types to improve clinical utility of these models. 
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