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Background and Purpose: Malaria, a persistent public health challenge in sub-Saharan Africa, 
disproportionately affects children under five, with socio-economic disparities and environmental 
factors exacerbating its burden.  
Methods: This study employs the Random Forest algorithm to predict malaria outbreaks using 
historical incidence data from Ghana (2011–2021). By incorporating lagged variables and analysing 
spatial and temporal dynamics, the model captures seasonality, including peaks during rainy seasons, 
and regional disparities in malaria cases.  
Results: The model achieved a robust R-squared value of 0.8193, reflecting strong predictive accuracy, 
with additional performance metrics including RMSE of 150.54, MAE of 96.46, and a correlation 
coefficient of 0.91 between predicted and actual values. Regional hotspots such as Ashanti and Western 
exhibited higher case numbers than Greater Accra, emphasizing the need for localized interventions.  
Conclusions: This study demonstrates the potential of Random Forest as a scalable tool for malaria 
prediction in resource-constrained settings, enabling data-driven decision-making and optimizing 
public health resources. Key limitations include potential biases from underreporting in rural areas, 
variations in healthcare-seeking behaviours affecting data quality, and uncertain generalizability 
beyond Ghana's ecological context. These findings align with global malaria reduction goals, 
emphasizing the integration of machine learning into public health strategies to reduce morbidity and 
mortality in vulnerable populations.  
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1 Introduction 

Malaria, an infectious disease transmitted to humans through the bite of female Anopheles mosquitoes, 

remains a significant global health issue and an obstacle to socio-economic development, particularly in 

sub-Saharan countries. Children under the age of five are the most vulnerable to malaria and its 

complications due to their developing immune systems [1]. In Ghana, malaria is one of the leading causes 

of disease, especially in children under five years of age, imposing a substantial burden on families and the 

public health system [2]. Despite various social and health interventions such as the free distribution of 

treated mosquito nets, free malaria treatment under the National Health Insurance Scheme (NHIS) and 

public education on malaria, its causes and effects, the prevalence of malaria continues to persist in the 16 

regions of the country, claiming thousands of lives each year. Malaria disproportionately affects children 

under five, contributing to over 80% of malaria deaths in Sub-Saharan Africa [3]. 

Accurate prediction of malaria outbreaks, particularly in children under five, is crucial for optimizing 

public health resources. By allowing for the timely distribution of interventions such as medications and 

preventive tools, health officials can direct supplies to high-risk areas well in advance [4]. Although many 

predictive models integrate climate, socioeconomic, and environmental data, such data is often complex to 

obtain in rural and resource-limited regions like Ghana. Consequently, relying on historical malaria 
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incidence data from national health surveillance records offers a practical and effective alternative to predict 

malaria trends in such settings [5].  

This study’s significance is underscored by its alignment with Ghana’s National Malaria Control 

Strategic plan (2021 – 2025), which emphasizes technological innovation and evidence-based decision 

making as essential components for reducing malaria burden [6]. The research is particularly timely as 

health systems face resource constraints due to recent global health challenges, making the efficient 

allocation of malaria control resources increasingly critical [7]. The recent improvements in Ghana's health 

information systems provide an unprecedented opportunity to leverage historical data for predictive 

modelling to inform targeted interventions. 

Despite advances in malaria predictions, significant research gaps persist. Previous models have often 

failed to account for the unique epidemiological patterns of malaria in children under five, who exhibit 

different clinical manifestations compared to adults [8]. Additionally, existing models frequently overlook 

local healthcare-seeking behaviors and socioeconomic factors specific to Ghana that significantly influence 

malaria transmission patterns [9][10]. Many sophisticated prediction systems require extensive data 

infrastructure and continuous monitoring of multiple parameters, making them impractical for resource-

constrained settings like rural Ghana [11]. This study addresses these limitations by developing a prediction 

model tailored to the Ghanaian context, focusing on children under five, and utilizing readily available 

historical health surveillance data. 

Although this project is focused on the Ghanaian context, its implications extend beyond national borders 

to other malaria-endemic regions worldwide that face similar challenges. Sub-Saharan Africa, for example, 

accounts for more than 90% of global malaria cases and deaths, with socioeconomic disparities, inadequate 

healthcare infrastructure, and environmental factors that worsen the burden of the disease [12]. Predictive 

models, tailored to specific local contexts but informed by global best practices, are critical tools for malaria 

control. These models help optimize resource allocation and guide interventions, offering indispensable 

support in malaria eradication efforts in resource-constrained settings [4][13]. The success of such models 

is contingent on integrating innovative technologies and methodologies. Advances in artificial intelligence, 

machine learning, and geographic information systems (GIS) have demonstrated significant potential to 

improve the accuracy and scalability of malaria prediction models. These technologies enable synthesizing 

diverse data types, climatic variables, demographic trends, and real-time health surveillance data, thus 

improving the precision of outbreak predictions [14][15]. Furthermore, incorporating insights from global 

initiatives such as the Malaria Atlas Project, which has successfully mapped malaria incidence worldwide, 

can improve the model's ability to address the unique challenges of resource-limited settings [16][17]. 

This project aligns with the World Health Organization's Global Technical Strategy for Malaria 2016 to 

2030, emphasizing data-driven decision-making, community engagement, and resource optimization as 

central components of malaria control efforts [18]. Through better planning and more efficient intervention 

strategies, this project has the potential to contribute significantly to global malaria reduction. The insights 

generated could also lay the groundwork for further research, ensuring that the benefits extend beyond 

Ghana and address the needs of vulnerable populations worldwide [4][19].  

The use of Random Forest for malaria prediction is particularly suited due to its ability to handle 

complex, non-linear relationships and large datasets. As an ensemble learning technique, Random Forest 

aggregates multiple decision trees, improving predictive accuracy and reducing overfitting. This is 

especially valuable in malaria prediction, where data is often noisy and non-linear [20][21]. Random Forest 

has been successfully applied in epidemiology, utilizing historical data, environmental factors, and climate 

variables such as rainfall and temperature to predict malaria outbreaks [4][22]. In malaria prediction 

models, Random Forest can integrate various data types, including climatic and socio-economic variables, 

crucial for understanding disease transmission patterns. Models incorporating factors such as land use, 

vegetation, and temperature have demonstrated strong predictive capabilities in malaria hotspots [4]. 

While other machine learning approaches, such as neural networks and support vector machines, have 

been applied to disease modelling, Random Forest offers distinct advantages. It demonstrates superior 

performance with limited training data compared to deep learning methods [23], provides higher 

interpretability than "black box" models [24], and shows remarkable robustness to missing data and outliers, 

which are common challenges in health surveillance datasets from resource-limited settings [25]. 

Comparative studies have demonstrated Random Forest's superior performance in malaria prediction 

compared to logistic regression and artificial neural networks when applied to contexts with comparable 

data limitations [22][26] 
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Furthermore, Random Forest's ability to handle missing data is invaluable in resource-constrained 

settings, where health surveillance data may be incomplete or inconsistent [4].  

The interpretability of Random Forest models also allows public health officials to identify key variables 

associated with malaria outbreaks, facilitating better resource allocation and more targeted interventions 

[19]. Given its proven effectiveness in malaria prediction, Random Forest is an ideal tool for this project, 

which aims to predict malaria outbreaks among children under five in Ghana. By analysing historical case 

data, the model will identify patterns that serve as early indicators of potential outbreaks, thus enhancing 

the country’s ability to allocate resources efficiently and improve early warning systems. The 

methodological framework developed here can be adapted to similar resource-constrained settings, 

providing a template for malaria prediction that balances accuracy with feasibility, potentially transforming 

how predictive analytics supports public health decision-making across malaria-endemic regions. 

2 Materials and methods  

2.1 Data collection and Pre-processing 

The dataset used in this study provides malaria incidence across 16 regions and their districts in Ghana, 

spanning the years 2011 to 2021. Each sheet corresponds to a specific year and contains four primary 

columns: Region, District, Period, and Total Sum. The Region and District columns identify the geographic 

location, while the Period specifies the time in months and years. The Total Sum column captures the 

number of malaria cases or related statistics for each period, specifically targeting children under five. Prior 

to analysis, the dataset underwent thorough data cleaning and preprocessing. Missing values in the dataset 

were addressed using mean substitution, where missing data points were replaced with the mean value of 

the available data within the same region and month across different years, preserving the seasonal patterns. 

This study aggregates the data by month and year, then visualizes the trends in malaria cases using a line 

plot to identify any patterns or seasonal trends in the data. The malaria data is also pre-processed to filter 

any noise or outliers. Instead of just predicting based on categorical variables (Month, Year, etc.), the study 

will leverage historical malaria cases. Adding lagged variables (e.g., cases in the previous month or 

previous year for the same month) can significantly improve the model. Figure 1 shows Ghana's total 

number of malaria cases per month from 2011 to 2022. Figure 1 illustrates a clear downward trend in the 

total number of malaria cases over the years, particularly after 2014. This could suggest improved control 

measures, public health interventions, or environmental factors influencing malaria incidence. There is a 

visible decline in malaria cases in the latter part of the timeline, with lower peak values than earlier years, 

decreasing from peaks of approximately 300,000 cases in 2014 to around 200,000 cases by 2021. Figure 1 

demonstrates pronounced cyclical patterns throughout the dataset, revealing strong seasonality in malaria 

transmission. These regular fluctuations in cases yearly are consistently linked to specific months associated 

with Ghana's rainy and dry seasons. Peaks in malaria cases typically occur during or shortly after the rainy 

season (May-October) when mosquito breeding conditions are most favourable, with the highest incidence 

often observed in June-August. These seasonal peaks in tropical regions like Ghana reflect heightened 

transmission during increased rainfall and humidity. Conversely, troughs in malaria cases are observed 

during the dry season, corresponding to months like December to February and October to December, when 

mosquito populations decline significantly due to reduced breeding sites. The cyclical pattern remains 

consistent across all years in the dataset. However, the amplitude of these seasonal fluctuations appears to 

decrease in later years, suggesting potentially improved year-round malaria control measures. The most 

significant anomaly in the seasonal pattern appears around mid-2020, where cases dropped to nearly 

100,000, possibly coinciding with COVID-19 pandemic measures that may have affected either malaria 

transmission or reporting patterns. 



77 Boateng et al. / Predicting Malaria Outbreaks in Children Under Five: Insights from Ghana 
 

 

© 2025 JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons Attribution Non-
Commercial License. J Health Inform Afr. 2025;12(1):74-86. DOI: 10.12856/JHIA-2025-v12-i1-550 

 

Figure 2. Total number of malaria cases per month from 2011 to 2022 

2.2 Random Forest Algorithm 

Random Forest (RF) is an ensemble machine learning algorithm known for its robustness, accuracy, and 

ability to handle complex datasets, making it an excellent choice for predicting malaria outbreaks in 

children under five. It operates by constructing multiple decision trees during training and aggregating their 

predictions, thereby reducing overfitting and enhancing model generalization. RF is particularly well-suited 

for datasets with non-linear relationships and numerous predictors, such as rainfall, temperature, and 

humidity, critical factors in malaria transmission. Additionally, it provides insights into variable 

importance, enabling researchers to identify key environmental drivers of malaria outbreaks. Several 

studies underscore the effectiveness of RF in malaria prediction. Ayele and colleagues [27] demonstrated 

its superior performance in Ethiopia, where RF outperformed logistic regression and support vector 

machines in predicting malaria cases using climate and environmental data. Similarly, Ngom and 

colleagues [28] applied RF in Senegal, highlighting its robustness in managing noisy data and its ability to 

capture complex interactions between variables. In Kenya, Anyona and colleagues [29] found RF highly 

effective in analysing the influence of rainfall and temperature on malaria prevalence, emphasizing its 

interpretability in identifying significant environmental factors. Further, studies by Mburu and colleagues 

[30] and Kamau and colleagues [31] also endorsed RF for its accuracy and practical utility in predicting 

malaria incidence across sub-Saharan Africa. Mburu and colleagues [30] utilized RF to predict malaria 

hotspots with high spatial precision, recommending it as a reliable tool for malaria intervention strategies. 

Kamau and colleagues [31] highlighted RF's versatility in combining epidemiological and climatic data for 

accurate forecasting. Moreover, Boateng and colleagues [32] validated RF's performance in malaria 

prediction in Ghana, advocating for its integration into public health decision-making processes. While we 

implemented Random Forest directly without comparing multiple algorithms in this study, the choice was 

informed by an extensive literature review consistently demonstrating RF's advantages for disease 

prediction. RF offers several benefits that make it particularly suitable for malaria prediction: Unlike linear 

models such as logistic regression, RF effectively captures the complex nonlinear relationships inherent in 

malaria transmission dynamics. As Ayele and colleagues [27] demonstrated, RF consistently outperformed 

logistic regression in similar malaria prediction contexts. RF provides feature importance scores that are 

particularly valuable for public health applications where understanding key drivers is essential for 

intervention planning. This interpretability advantage over "black box" models like neural networks is 

crucial for translating findings into actionable public health measures. Health surveillance data from 

resource-constrained settings often contains noise and inconsistencies. RF's ensemble approach, which 

averages predictions across multiple trees, provides robustness against such noise as demonstrated by Ngom 

and colleagues [28]. RF has shown strong performance for regions with limited historical data compared to 

more data-hungry approaches like deep learning [33]. Given the proven advantages of RF, including its 
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adaptability to complex datasets, high predictive accuracy, and capacity to identify critical drivers of 

malaria, it is an ideal choice for this study. Its application in similar contexts provides a strong scientific 

foundation for predicting malaria outbreaks in Ghana, particularly in vulnerable populations such as 

children under five. 

2.3 Model Development and Performance Evaluation 

Machine learning models such as Random Forest perform predictive modelling of malaria cases. The model 

was developed with parameter initialization by starting with a set of initial parameters for the Random 

Forest, including the number of trees, the depth of trees, and the criteria for splitting. The model's 

performance on the test dataset is evaluated using R-squared (to determine the proportion of variance 

explained by the model). The respective machine-learning approaches of R code are also incorporated in 

this study. 

 

2.3.1 Importing Libraries 
 
The R programming language was used for the data analysis and machine learning. These libraries, readxl, 

dplyr, ggplot2, and randomForest, were used for data pre-processing, analysis, and potentially machine 

learning tasks. 

 

library(readxl) 

library(dplyr) 

library(ggplot2) 

library(randomForest) 

 

2.3.2 Importing Data 
 
Readxl was used to read the files and store them in the data. 

file_path <- "E:/Malaria_Outbreak/Malaria_Incidence.xlsx" 

sheet_names <- excel_sheets(file_path) 

all_data <- lapply(sheet_names, function(sheet) { 

data <- read_excel(file_path, sheet = sheet) 

data <- data %>% 

mutate(Period = as.Date(paste0(Period, "-01"), format = "%B %Y-%d")) %>% 

na.omit()   # Remove rows with missing values in 'Period' 

return(data)}) 

all_data <- bind_rows(all_data) 

Adding new columns, Years and Month, while adding lagged variables (e.g., cases in the previous month 

or previous year for the same month) can significantly improve your model. Below is another R code 

snippet for data transformation and feature creation: 

 

all_data <- all_data %>% 

mutate( 

Month = format(Period, "%B"),      # Extract month name 

Year = as.numeric(format(Period, "%Y")),      # Extract year 

Total_Sum = ifelse(is.na(Total_Sum), 0, Total_Sum)  # Handle missing values in 'Total_Sum' ) 

 

# Create lagged features for previous months 

all_data <- all_data %>% 

arrange(Period) %>% 

group_by(Region, District) %>% 

( 

Lag_1 = lag(Total_Sum, 1), 

Lag_2 = lag(Total_Sum, 2), 

Lag_3 = lag(Total_Sum, 3), 
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Lag_12 = lag(Total_Sum, 12) # Previous year's same month 

) %>% 

ungroup() %> 

na.omit() # Remove rows with missing lagged values 

3 Results 

3.1 Model Building  

The dataset was split into training and testing sets based on the year: Training Set: Data prior to 2021. 

Testing Set: Data for the year 2021. To prepare the data for the Random Forest model, categorical variables 

were one-hot encoded using the model. Matrix function. This ensures the model can correctly interpret the 

categorical predictors, especially for regions and districts. 

 

# Split data into training and testing sets 

train_data <- all_data %>% filter(Year < 2021) 

test_data <- all_data %>% filter(Year == 2021) 

 

# One-hot encoding of categorical variables 

X_train_encoded <- model.matrix(~ . - 1, data = train_data %>% select(-Total_Sum, -Period)) 

X_test_encoded <- model.matrix(~ . - 1, data = test_data %>% select(-Total_Sum, -Period)) 

 

# Define target variable (Total_Sum) for training and testing 

y_train <- train_data$Total_Sum 

y_test <- test_data$Total_Sum 

 

# Train the Random Forest model 

set.seed(42)  # Set seed for reproducibility 

rf_model <- randomForest(x = X_train_encoded, y = y_train, ntree = 10, importance = TRUE) 

 

# Make predictions on the test set 

y_pred <- predict(rf_model, X_test_encoded) 

3.2 Random Forest Implementation Details 

In our Random Forest implementation for malaria prediction, each decision tree in the ensemble starts with 

a root node containing all training data points and recursively partitions data based on features that best 

separate malaria incidence levels. We implemented the model with 10 trees (ntree = 10), with each tree 

trained on a bootstrap sample of the original data. At each node, potential splits were evaluated based on 

reduction in mean squared error (MSE), framing this as a regression problem predicting the exact number 

of cases (Total_Sum), while considering temporal features (lag variables Lag_1, Lag_2, Lag_3, and 

Lag_12), geographical information (Region and District), and seasonal patterns (Month). 

The model heavily relied on lagged variables, with previous months' incidence rates emerging as top 

predictors in feature importance analysis, aligning with malaria's seasonal and cyclical transmission 

patterns. Each decision tree's terminal nodes (leaves) contained predicted numerical values for malaria 

incidence, and unlike classification trees that output class labels, our regression trees produced continuous 

numerical predictions of malaria cases. The final prediction was determined by averaging predictions from 

all 10 trees, providing a robust estimate of expected malaria cases. 

3.3 Model Evaluation 

When evaluating the performance of a model, it is crucial to select appropriate metrics based on the nature 

of the problem. One standard metric is R-squared, which measures the proportion of the variance in the 
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target variable that the model's predictors can explain. A higher R-squared value indicates a better fit for 

the developed model. 

 

r2 <- 1 - sum((y_test - y_pred)^2) / sum((y_test - mean(y_test))^2) 

The R-squared value of 0.8193 indicates that the model explains approximately 81.93% of the dependent 

variable (target) based on the independent variables (predictors) included. This relatively high R-squared 
value suggests that the model fits the data well and has strong predictive power. However, it is essential to 

note that while a high R-squared indicates a good fit, it does not guarantee that the model is free from 

overfitting or other issues, such as bias in predictions. 

To provide a more comprehensive evaluation of our model's performance, we calculated additional metrics: 

# Calculate RMSE (Root Mean Square Error) 

rmse <- sqrt(mean((y_test - y_pred)^2)) 

 

# Calculate MAE (Mean Absolute Error) 

mae <- mean(abs(y_test - y_pred)) 

# Calculate MAPE (Mean Absolute Percentage Error) 

mape <- mean(abs((y_test - y_pred)/y_test)) * 100 

# Calculate R-squared 
r_squared <- 1 - sum((y_test - y_pred)^2) / sum((y_test - mean(y_test))^2) 

 

# Calculate correlation 

correlation <- cor(y_pred, y_test) 

 

# Create performance summary 

performance_summary <- data.frame( 

 Metric = c("RMSE", "MAE","R-squared", "Correlation"), 

Value = c(rmse, mae, r_squared, correlation) 

) 

print("Summary of Model Performance:") 
print(performance_summary) 

 

The RMSE value of 150.54 represents the standard deviation of the prediction errors, while the MAE of 

96.46 indicates the average magnitude of errors in the predictions. The correlation coefficient 0.91 further 

supports the strong relationship between the predicted and actual values. Together, these metrics confirm 

that our model performs well, with the R-squared showing that approximately 82% of the variance in the 

target variable is explained by our model. 

Monthly, the predicted cases are plotted against the actual cases for the entire nation. 

 

# Filter test_data to include only rows corresponding to y_test 

filtered_test_data <- test_data %>% filter(Year == 2021) 

 
# Ensure lengths match 

stopifnot(nrow(filtered_test_data) == length(y_test)) 

 

# Combine Actual (y_test) and Predicted (y_pred) with Month and Year 

plot_data_monthly <- data.frame( 

Actual = y_test, 

Predicted = y_pred, 

Month = filtered_test_data$Month, 

Year = filtered_test_data$Year 

) %>% 

 group_by(Year, Month) %>% 
summarise( 

 Actual = sum(Actual, na.rm = TRUE), 

Predicted = sum(Predicted, na.rm = TRUE), 

 .groups = "drop" 

) %>% 



81 Boateng et al. / Predicting Malaria Outbreaks in Children Under Five: Insights from Ghana 
 

 

© 2025 JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons Attribution Non-
Commercial License. J Health Inform Afr. 2025;12(1):74-86. DOI: 10.12856/JHIA-2025-v12-i1-550 

mutate( 

 Date = as.Date(paste(Year, match(Month, month.name), "01", sep = "-")) 

 ) 

 

# Plot the aggregated data 

ggplot(plot_data_monthly, aes(x = Date)) + 

geom_line(aes(y = Actual, color = "Actual"), size = 1) + 

geom_point(aes(y = Actual, color = "Actual"), size = 2) + 
geom_line(aes(y = Predicted, color = "Predicted"), size = 1, linetype = "dashed") + 

geom_point(aes(y = Predicted, color = "Predicted"), size = 2) + 

labs( 

title = "Monthly Predicted vs Actual Malaria Cases", 

x = "Date", 

y = "Malaria Cases", 

color = "Legend" 

 ) + 

scale_color_manual(values = c("Actual" = "blue", "Predicted" = "red")) + 

theme_minimal() + 

theme( 

panel.grid.major = element_blank(),  # Remove major grid lines 
panel.grid.minor = element_blank()   # Remove minor grid lines 

) 

Figure 2 compares actual and predicted monthly malaria cases for 2021, highlighting the model's ability to 

capture seasonal trends. Both actual and predicted cases exhibit a sharp increase, peaking around mid-year 

(July), followed by a decline. While the model aligns well with the general pattern, it slightly underestimates 

the magnitude of the peak and overestimates in some months during the decline. These discrepancies 

suggest that while the model effectively captures seasonal variability, its precision in predicting extreme 

values could be improved. 

 

 
Figure 2. Actual and predicted monthly malaria cases for 2021 
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Plotting the predicted cases against the actual cases for each region in the country. 

# Prepare the data for plotting by region, year, and month 

plot_data_monthly <- data.frame( 

Actual = y_test, 

 Predicted = y_pred, 

Month = filtered_test_data$Month, 

Year = filtered_test_data$Year, 

 Region = filtered_test_data$Region 

) %>% 

group_by(Region, Year, Month) %>% 

summarise( 

Actual = sum(Actual, na.rm = TRUE), 

Predicted = sum(Predicted, na.rm = TRUE), 

.groups = "drop" 

) %>% 

mutate( 

Date = as.Date(paste(Year, match(Month, month.name), "01", sep = "-")) 

 ) 

# Plot the data 

ggplot(plot_data_monthly, aes(x = Date)) + 

 geom_line(aes(y = Actual, color = "Actual"), size = 1) + 

  geom_point(aes(y = Actual, color = "Actual"), size = 2) + 

 geom_line(aes(y = Predicted, color = "Predicted"), size = 1) + 

 geom_point(aes(y = Predicted, color = "Predicted"), size = 2) + 

labs( 

title = "Monthly Predicted vs Actual Malaria Cases by Region", 

x = "Date", 

y = "Malaria Cases", 

color = "Legend" 

) + 

 scale_color_manual(values = c("Actual" = "blue", "Predicted" = "red")) + 

 theme_minimal() + 

theme( 

panel.grid.major = element_blank(), # Remove major grid lines 

panel.grid.minor = element_blank()  # Remove minor grid lines 

 ) + 

 facet_wrap(~Region, scales = "free_y") # Facet by Region with independent y-scales 
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Figure 3 compares monthly predicted malaria cases and actual cases across regions from 2020 to 2021, 

highlighting spatial and temporal variations. Each region exhibits a clear seasonal pattern, with annual 

peaks that align with expected environmental conditions, such as rainy seasons. Ashanti, Central, and 

Western regions report higher malaria cases, indicating a significant disease burden. Meanwhile, Greater 

Accra and North East areas show relatively lower cases but maintain consistent seasonal peaks. The model 

demonstrates strong predictive accuracy, as the predicted values closely follow the actual trends in most 

regions, capturing both seasonality and magnitude effectively. However, minor deviations are observed in 

regions like Bono East and Northern, where the model occasionally overestimates or underestimates case 

magnitudes. Overall, this analysis underscores the importance of considering regional disparities and 

seasonal dynamics in malaria transmission to enhance intervention strategies and allocate resources 

efficiently. 

 

Figure 3. Monthly predicted malaria cases and actual cases across regions from 2020 to 2021 

4 Discussion 

This study validates the Random Forest algorithm as a reliable and effective tool for predicting malaria 

outbreaks among children under five in Ghana. Achieving an R-squared value of 0.8193, the model 

demonstrates strong predictive accuracy, capturing seasonal trends that align with the well-documented 

rainy seasons, a finding consistent with studies by Ngom and colleagues [28] in Senegal and Anyona and 

colleagues [29] in Kenya. This research corroborates prior work by Boateng and colleagues [32], who 

validated the application of Random Forest in Ghana for malaria prediction, further substantiating its utility 

in public health frameworks tailored to resource-constrained environments. 

Identifying high-burden regions, such as Ashanti, Central, and Western, aligns with Mburu and 

colleagues (2020), who employed machine learning to pinpoint malaria hotspots across sub-Saharan Africa. 

Similarly, Boateng and colleagues [32] highlighted regional variations within Ghana, emphasizing the need 

for localized interventions informed by robust predictive models. The study further supports findings by 
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Kamau and colleagues [31], which demonstrated that integrating epidemiological and climatic data 

enhances the spatial precision of malaria forecasts. 

This study's reliance on historical incidence data highlights its relevance in data-limited settings, a 

methodological choice previously validated by Adams and Smith [5]. By incorporating lagged variables, 

the model captures temporal dependencies crucial for improving predictive accuracy, echoing the findings 

of Mwandama and colleagues [19]. The approach also complements global observations by Ayele and 

colleagues [27] and Basu and colleagues [4], who found Random Forest highly adaptable, particularly in 

handling incomplete and noisy datasets. 

Within Ghana, the study builds on local evidence provided by Boateng and colleagues [32], whose work 

emphasized Random Forest’s ability to guide the strategic allocation of malaria control resources. The 

model's capacity to accurately predict temporal and regional variations is critical for optimizing 

interventions such as insecticide-treated nets and antimalarial distribution, aligning with the World Health 

Organization’s Global Technical Strategy for Malaria (2016–2030). 

Based on these findings, we recommend several policy actions: (1) Implementing regionalized 

intervention strategies that allocate resources proportionally to the predicted disease burden, with particular 

attention to high-transmission regions identified by the model. (2) Timing prevention campaigns to precede 

predicted seasonal peaks, particularly in the months leading up to July. (3) Surveillance systems in 

underreported areas should be enhanced to address data quality concerns. (4) Establishing formal 

partnerships between the Ghana Health Service, the Meteorological Agency, and environmental monitoring 

institutions to facilitate data sharing. (5) Developing protocols for communicating predictive insights to 

communities through culturally appropriate channels that promote preventive actions. 

Despite the model's strong performance, several limitations warrant consideration. First, potential biases 

exist in the dataset, particularly regarding underreporting of malaria cases in rural and resource-constrained 

areas. Health facilities with limited diagnostic capabilities may record symptomatic cases without 

laboratory confirmation, affecting data quality. Additionally, seasonal variations in healthcare-seeking 

behavior could skew temporal patterns in the recorded data. The generalizability of this model beyond 

Ghana remains uncertain, as malaria transmission dynamics vary significantly across different ecological 

zones in sub-Saharan Africa. While the methodological framework could be transferred to other contexts, 

model parameters would require recalibration to account for regional differences in climate patterns, vector 

species distribution, and intervention coverage. 

In conclusion, the findings validate the use of Random Forest in malaria modelling, particularly in 

Ghana, where regional disparities and seasonal dynamics present unique public health challenges. By 

bridging predictive analytics with actionable insights, this study advances the application of machine 

learning in malaria control efforts, providing a scalable framework for other malaria-endemic regions 

globally. 

5 Recommendation 

Integrating predictive modelling into national public health frameworks to enhance malaria control efforts 

is critical. Governments and stakeholders should prioritize adopting machine learning tools like Random 

Forest for early detection of high-risk periods and regions, enabling the timely allocation of resources such 

as insecticide-treated nets and antimalarial medications. To maximize effectiveness, these models should 

be implemented as decision-support tools within existing health information systems like Ghana's DHIMS, 

complementing rather than replacing traditional surveillance methods. Integrating automated data pipelines 

would enable continuous model updating with real-time information, significantly enhancing predictive 

capabilities. Investments in data infrastructure are also essential to improve data availability and quality, 

particularly in rural settings where climatic and socioeconomic variables are often inaccessible. 

Furthermore, targeted public health campaigns should address regional disparities, focusing on high-burden 

areas like Ashanti and Western, while maintaining surveillance in lower-incidence regions. Implementation 

success depends on developing technical infrastructure, creating clear response protocols, and providing 

targeted training for health officials on interpreting and applying model outputs. Looking ahead, future 

research should expand this work by testing additional variables such as satellite-derived environmental 

data on rainfall and vegetation indices, applying the methodology to different regions or diseases, and 

exploring alternative AI techniques like deep learning and ensemble methods. Establishing partnerships 
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between health departments and meteorological agencies could facilitate the incorporation of mobile health 

reporting platforms to provide early signals of increasing malaria incidence. Collaborations with global 

health organizations can support capacity building and technology transfer to scale such models across 

other malaria-endemic regions. We call upon health ministries in endemic countries to initiate pilot 

programs incorporating these predictive frameworks into their decision-making processes, as their 

deployment in real-world healthcare settings could revolutionize resource allocation efficiency and 

ultimately accelerate progress toward malaria eradication. 
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